Electrostatic complementarity at protein/protein interfaces.

نویسندگان

  • A J McCoy
  • V Chandana Epa
  • P M Colman
چکیده

Calculation of the electrostatic potential of protein-protein complexes has led to the general assertion that protein-protein interfaces display "charge complementarity" and "electrostatic complementarity". In this study, quantitative measures for these two terms are developed and used to investigate protein-protein interfaces in a rigorous manner. Charge complementarity (CC) was defined using the correlation of charges on nearest neighbour atoms at the interface. All 12 protein-protein interfaces studied had insignificantly small CC values. Therefore, the term charge complementarity is not appropriate for the description of protein-protein interfaces when used in the sense measured by CC. Electrostatic complementarity (EC) was defined using the correlation of surface electrostatic potential at protein-protein interfaces. All twelve protein-protein interfaces studied had significant EC values, and thus the assertion that protein-protein association involves surfaces with complementary electrostatic potential was substantially confirmed. The term electrostatic complementarity can therefore be used to describe protein-protein interfaces when used in the sense measured by EC. Taken together, the results for CC and EC demonstrate the relevance of the long-range effects of charges, as described by the electrostatic potential at the binding interface. The EC value did not partition the complexes by type such as antigen-antibody and proteinase-inhibitor, as measures of the geometrical complementarity at protein-protein interfaces have done. The EC value was also not directly related to the number of salt bridges in the interface, and neutralisation of these salt bridges showed that other charges also contributed significantly to electrostatic complementarity and electrostatic interactions between the proteins. Electrostatic complementarity as defined by EC was extended to investigate the electrostatic similarity at the surface of influenza virus neuraminidase where the epitopes of two monoclonal antibodies, NC10 and NC41, overlap. Although NC10 and NC41 both have quite high values of EC for their interaction with neuraminidase, the similarity in electrostatic potential generated by the two on the overlapping region of the epitopes is insignificant. Thus, it is possible for two antibodies to recognise the electrostatic surface of a protein in dissimilar ways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyses of homo-oligomer interfaces of proteins from the complementarity of molecular surface, electrostatic potential and hydrophobicity.

To extract the general structural features of interacting protein pairs, the non-redundant homo-oligomer interfaces (393 interfaces) in the PDB were analyzed using the fine-grained molecular surface, electrostatic potentials and the hydrophobicity calculated as the solvation free energy using empirical parameters. For each property, statistical analyses of the degree of complementarity were car...

متن کامل

Self-complementarity within proteins: bridging the gap between binding and folding.

Complementarity, in terms of both shape and electrostatic potential, has been quantitatively estimated at protein-protein interfaces and used extensively to predict the specific geometry of association between interacting proteins. In this work, we attempted to place both binding and folding on a common conceptual platform based on complementarity. To that end, we estimated (for the first time ...

متن کامل

PreBI: prediction of biological interfaces of proteins in crystals

PreBI is a server that predicts biological interfaces in protein crystal structures, according to the complementarity and the area of the interface. The server accepts a coordinate file in the PDB format, and all of the possible interfaces are generated automatically, according to the symmetry operations given in the coordinate file. For all of the interfaces generated, the complementarities of...

متن کامل

Thermal Adaptations of DNA-Binding Proteins

Adaptations of thermophilic microorganisms to high environmental temperatures have been under extensive study for years [1]. These efforts have provided valuable insight into the biology of thermophiles and clarified how various components of the cell have adapted to their extreme living conditions. However, the cell is a complicated system; not only do individual components but also the comple...

متن کامل

Dissecting protein–RNA recognition sites

We analyze the protein-RNA interfaces in 81 transient binary complexes taken from the Protein Data Bank. Those with tRNA or duplex RNA are larger than with single-stranded RNA, and comparable in size to protein-DNA interfaces. The protein side bears a strong positive electrostatic potential and resembles protein-DNA interfaces in its amino acid composition. On the RNA side, the phosphate contri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 268 2  شماره 

صفحات  -

تاریخ انتشار 1997